Beginner Topics

Hello World

It is a long tradition to introduce new languages with a short program which displays the text ‘Hello World!’ Since Babel18 executes in a windowed environment, we’ll give an example which puts the text ‘Hello World!’ in a dialog box and waits for the user to click the ‘ok’ button. Without further ado:

function StartUp() : void

	{

		MsgBox("Hello World!");

		ExitGame();

	}

Anatomy of a Function

function	We’re declaring a function rather than a variable (‘var’), class (‘class’), or constant (‘const’).

StartUp	Here’s the name for this function. StartUp is a special name -- this function is called by the script engine at the beginning. StartUp is therefore the first function called, and where everything begins.

()	After the name, the parameters to this function are specified between parentheses (‘(’ and ‘)’). StartUp takes no parameters so nothing is present inbetween the parentheses.

: void	After a colon, the type this function returns is specified. For the moment think of type as the “units” used to express the value -- so a timer function might return a quantity in second while the arccos function might return radians. Actually, ‘type’ is a similar but not identical concept, but the analogy is good enough for now. “void” indicates that this function doesn’t return anything. In general, when a function is called in code (see below for examples), it does some computation and returns a value of a specific type. Calling a function is also called evaluating the function. We also say the function “evaluates to” the value it returns.

{ ... }	The body of the function is specified between a matching pair of curly braces (‘{’ and ‘}’). This has all of the instructions for what to do when this function is called.

MsgBox("Hello World!");

ExitGame();	(from the body of the function) These are examples of function calls. The MsgBox function creates a dialog which is displayed until the user clicks its ‘ok’ button. MsgBox takes a parameter, a string. This string is the text which will be in the dialog. In this case, the string is specified by a sequence of characters in double quotes ("s). Alternatively, it could be the return value of a function or a variable of type string. Note that the semicolons (‘;’) at the end of each statement are optional, but recommended. This holds for almost all semicolons in the language (exceptions: for loops, null statement, see below).

	<Advanced> In fact, MsgBox has two optional parameters: a title (a string which defaults to "", the empty string or null string), and an enumerant (we’ll get into enumerants or “enum”s later) indicating what buttons should be included. The last parameter defaults to “enum<Buttons>.OkOnly”.</Advanced>

	The ExitGame() function indicates that we’re done and we want the program to end. It calls another function called “ShutDown” which you may define, much like “StartUp”.

A More Complicated Example

function StartUp() : void

	{

		var yourname : string;

		if (StringDlg(out yourname,

				 "Please Enter Your Name:",

				 enum<Buttons>.OkCancel)

				== enum<DlgResponse>.Ok)

			MsgBox("Thanks "+yourname+"!");

		ExitGame();

	}

var yourname : string;

	This is called a variable declaration. In this particular case it creates a place in memory called “yourname” which holds a string (just like the things in double quotes). We may assign values to the variable or read the values back when we use the variable name in an expression.

if (expression) statement;

	This is called an if statement. It has two parts, an expression (which must evaluate to a boolean value) and a statement. First the expression is evaluated, if it evaluates to the boolean value “true”, then the statement is executed. Otherwise the statement is skipped. If you want to include more than one statement, you should enclose the statements in curly braces (‘{’ and ‘}’) forming a block statement. See “Flow control” below for more ways of controlling which statements get executed.

expr1 == expr2

	This is an example of the equality operator, “==”. This expression returns a boolean value. The two expressions (expr1 and expr2) are evaluated and their values are compared. If they compare equal, then the expression evaluates to “true,” otherwise the expression evaluates to “false.” Note how the output of the equality operator is a suitable input for the if statement described above, since both are of boolean (or “bool”) type. There is also an assignment operator which is the single character “=”. Use this to change the value of variables, but be careful not to use it inside an if statement. If you do, the compiler will complain since it expects the boolean type provided by the equality operator, rather than the void type returned by the assignment operator. The nice thing about keeping track of types is that the compiler can catch these sorts of mistakes.

StringDlg(out yourname, "Please Enter Your Name:", enum<Buttons>.OkCancel)

	This is a function which creates a dialog with some text, an edit box, and some buttons. The second parameter to the function is the text which tells the user what should be entered into the edit box. The third parameter indicates what buttons are visible in the dialog box. The first parameter stores the text entered by the user. Note the prefix “out” -- this indicates that the function is outputting to yourname, rather than having the value of yourname sent to the function. As a result, you have to supply something which may be ‘set’ (like the name of a variable) and not just a value (like ‘7’). Most parameters are “in” parameters which have no prefix, while others are “inout” parameters which act as both input and output for the function.

	<Advanced>The last parameter is optional here too. It defaults to “enum<Buttons>.OkOnly”, but also could be “enum<Buttons>.CancelOk” (which has Cancel as the default instead of Ok, though they still appear in the same order in the dialog), “enum<Buttons>.YesNo”, “enum<Buttons>.NoYes”, “enum<Buttons>.YesNoCancel”, “enum<Buttons>.NoYesCancel”, “enum<Buttons>.NextPrev”, or “enum<Buttons>.DonePrev”.</Advanced>

	<Advanced>The labels on the button will automatically be “localized” -- ie. translated into the user’s language. That is assuming that a language file has been created for the user’s language. To get the instructions in the box to be translated as well, you need the “localize” command described later.</Advanced>

enum<DlgResponse>.Ok

	The StringDlg command returns a value which depends on which button was used to close the dialog. Possibilities include “enum<DlgResponse>.Ok” (if the Ok button was pressed), “enum<DlgResponse>.Cancel” (the Cancel button, naturally), “enum<DlgResponse>.Yes”, “enum<DlgResponse>.No”, “enum<DlgResponse>.Next”, “enum<DlgResponse>.Prev”, and “enum<DlgResponse>.Done”.

	<Advanced>Actually, MsgBox also returns a value of type enum<DlgResponse>. However, since we left it with the default single button in the “Hello World” example above, MsgBox would only ever return enum<DlgResponse>.Ok. We could therefore safely ignore the return value.</Advanced>

MsgBox("Thanks "+yourname+"!");

	(this is the body of the if statement: this is only executed if the equality expression evaluates to the boolean value ‘true’) This is just like the MsgBox from the “Hello World” program, except the parameter is a string expression. The expression takes “Thanks ”, appends the contents of the variable yourname (which was set by the call to StringDlg to what the user entered), and appends to that an exclamation point.

	Note that the plus operator (‘+’) does string concatenation when applied to strings and performs addition when applied to numbers. This is an example of operator overloading, where one operator (plus in this case) will perform different operations depending on the type of values involved. There will be more examples of this later.

ExitGame();

	This function (which ends the program, as before) is after the if statement, so it will be executed no matter what the value of the expression in the if statement is. However, if the expression evaluates to “true,” the body of the if statement will be executed before the ExitGame() function is called.

Comments

Variable Declarations

There are a few ways of declaring variables. Except for some optional prefixes, variables are declared the same way inside a function, in global scope, and inside a class.

In the following, ‘[;]’ means that you may optionally put a semicolon (a ‘;’). It is good practice to include the semicolon, and you are encouraged to do so.

* var v1, v2, v3 : vtype [;]

Declares three variables of type vtype. v1, v2, v3 are all initialized to zero (or false if vtype is ‘bool’).

* var vi = expression [;]

Declares one variable vi. The type of vi is determined by the type of the expression. vi is initialized to the value of the expression.

* var ve : vtype = expression [;]

Declares one variable of type vtype initialized to the expression. “expression” must be catable to type vtype.

* Note: “var vi = expression” is equivalent to “var vi : typeof(expression) = expression” but is less redundant.

* Note: very commonly one will use something like “var vi = vclass(constructor arguments);” to create a new object instance and assign it to a variable (‘vi’).

Functions

Flow Control

Operators

Objects vs. Types

Primitive Types vs. Classes

Automatic Casting

Standard Library

Streams

Containers and Iterators

Standard Containers

Orders

Container Algorithms

Windows and Dialogs

Import and Export

Localization: Supporting Many Languages

The problem: we want to be able to change all the text around if the user speaks French instead of English. However, we really don’t want write the program all over for each language we want to support.

To the programmer

<FINISH THIS>

To the translator

<FINIS
